$C \le 0.02$ / Cr 19.0 - 21.0 / Ni 24.0 - 26.0 / Mo 4.0 - 5.0 / Cu 1.0 - 2.0 / $N \le 0.15 1.4539$ / X1 NiCrMoCu 25-20-5 / DIN EN 10088 / VdTÜV Blatt 421 (SEW 400) AISI (904L) / SIS 2562*

Einsatzbereiche

Zellstoffindustrie; chem. Industrie; Umwelttechnik; Wehrtechnik; Meerestechnik; Medizin und Pharmazeutik.

Verarbeitungsverfahren

Spanende Bearbeitung; Freiform- und Gesenkschmieden; Kaltumformung, Kaltstauchen.

Korrosionsbeständigkeit ••••

Bedingt durch den hohen Anteil der Legierungselemente ist die Korrosionsbeständigkeit deutlich besser als bei anderen austenitischen CrNiMo-Güten. 1.4539 ist besonders geeignet in Medien, die Lochfraß- oder Spannungsrisskorrosion bewirken (z.B. Meerwasser bis 70 °C, Schwefel- und Phosphorsäurelösungen mit höhren Konzentrationen).

Mechanische Eigenschaften ●●○○○

Optimale Verarbeitungseigenschaften werden durch eine Wärmebehandlung im Temperaturbereich zwischen 1040 und 1120 °C mit anschießend rascher Abkühlung an Luft oder Wasser erreicht.

Schmieden ••000

Erwärmung ohne besondere Vorkehrungen auf 1180 °C. Warmumformung im Bereich zwischen 1150 und 950 °C. Abkühlung an Luft oder Wasser, wenn ein Verzug nicht zu befürchten ist.

Schweißen •••00

Der Werkstoff 1.4539 ist nach allen Verfahren gut schweißbar. Die Verwendung von Zusatzwerkstoffen ist ratsam.

Spanabhebende Bearbeitung ●0000

Bedingt durch eine geringe Wärmeleitfähigkeit neigt der Werkstoff 1.4539 bei der spanabhebenden Bearbeitung zur Kaltverfestigung.

Anmerkung

1.4539 kann schwach magnetisch sein. Die Magnetisierbarkeit kann mit steigender Kaltverformung zunehmen. Der Werkstoff ist polierfähig.

^{*} Zum "Internationaler Werkstoffvergleich"